Baicalein pretreatment confers cardioprotection against acute myocardial infarction by activating the endothelial nitric oxide synthase signaling pathway and inhibiting oxidative stress.
نویسندگان
چکیده
Baicalein, a flavonoid purified from the root of Scutellaria baicalensis Georgi, is well known for its anti-inflammatory and anti-oxidative properties. The present study aimed to evaluate the cardioprotective effect of baicalein in a rat model of acute myocardial infarction and investigate the potential molecular mechanisms of this effect. The acute myocardial infarction model was prepared by permanently occluding the left anterior descending artery. Baicalein and/or the endothelial nitric oxide synthase (eNOS) inhibitor L-NAME was injected prior to the induction of acute myocardial infarction. In the vehicle-treated group, acute myocardial infarction resulted in a markedly increased infarction size and elevated levels of plasma cardiac enzymes, including creatine kinase, the MB isoenzyme of creatine kinase, lactate dehydrogenase and cardiac troponin T, compared with those in the sham-surgery group. In the baicalein treatment group, the infarcted area and plasma levels of the cardiac enzymes were significantly decreased compared with those in the vehicle-treated group. In addition, pretreatment with baicalein potently increased the levels of eNOS protein and nitric oxide production in the infarcted rats. Furthermore, myocardial oxidative stress was attenuated by baicalein preconditioning following acute myocardial infarction. However, L-NAME inihibted the cardioprotective effects of baicalein. These data indicate that baicalein protects against acute myocardial infarction-induced injury by activating eNOS signaling and inhibiting oxidative stress.
منابع مشابه
Alginate oligosaccharide alleviates myocardial reperfusion injury by inhibiting nitrative and oxidative stress and endoplasmic reticulum stress-mediated apoptosis
Alginate oligosaccharide (AOS) has recently demonstrated the ability to protect against acute doxorubicin cardiotoxicity and neurodegenerative disorders by inhibiting oxidative stress and endoplasmic reticulum (ER) stress-mediated apoptosis, which are both involved in myocardial ischemia/reperfusion (I/R) injury. In the present study, we investigated whether pretreatment with AOS protects again...
متن کاملExploring the role and inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning induced cardioprotection in rats
Objective(s): This study explored the inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning (RIPC) conferred cardioprotection. Materials and Methods: Blood pressure cuff was placed around the hind limb of the animal and RIPC was performed by 4 cycles of infla...
متن کاملBaicalein is an available anti-atherosclerotic compound through modulation of nitric oxide-related mechanism under oxLDL exposure
OxLDL facilitate reactive oxygen species (ROS) formation and up-regulation of the executioner caspase-3 via the mitochondrial apoptotic pathway involves several critical steps in human endothelial cells. Previous studies reported that oxLDL-facilitated endothelial oxidative stress is associated with impairment of eNOS and up-regulation of inducible nitric oxide synthase (iNOS). Baicalein is the...
متن کاملCardioprotection of CAPE-oNO2 against myocardial ischemia/reperfusion induced ROS generation via regulating the SIRT1/eNOS/NF-κB pathway in vivo and in vitro
Caffeic acid phenethyl ester (CAPE) could ameliorate myocardial ischemia/reperfusion injury (MIRI) by various mechanisms, but there hadn't been any reports on that CAPE could regulate silent information regulator 1 (SIRT1) and endothelial nitric oxide synthase (eNOS) to exert cardioprotective effect. The present study aimed to investigate the cardioprotective potential of caffeic acid o-nitro p...
متن کاملExercise training provides cardioprotection by activating and coupling endothelial nitric oxide synthase via a β3-adrenergic receptor-AMP-activated protein kinase signaling pathway
Exercise training confers sustainable protection against ischemia/reperfusion injury. However, the mechanism by which this process occurs is not fully understood. Previously, it was shown that β3-adrenergic receptors (β3-ARs) play a critical role in regulating the activation of endothelial nitric oxide synthase (eNOS) in response to exercise and play a critical role in exercise-mediated cardiop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular medicine reports
دوره 9 6 شماره
صفحات -
تاریخ انتشار 2014